
j.A0A087 728 MARYLAND UNIV COLLEGE PARK DEPT OF PHYSICS AND ASTRONOMY F/0 20/9

IRREVERSIBILITY AND TRANSPORT IN THE LOWER HYBRID DRIFT INSTABL--ETC(U)
MAR 80 J F DRAKE NROVDV TV C 0865

UNCLASSIFIED PU-00155N L

LME=EEEEh



1111110 -2-

11111 111 1.4 11.2

1111 1-2 1.4 111111.6

Mti7)P R 11 )N I AP



IRREVERSIBILITY AND TRANSPORT IN THE

LOWER HYBRID DRIFT INSTABILITY

by

J.F. Drake

Physics Publication Number 80-155
Technical Report Number 80-088

March 1980

~~UNIVERSITY OF MARYLAND -

DEPARTMENT OF PHYSICS AND ASTRONOMY

CLEA MAL

80 6 20 16



QA
jIRREVERSIBILITY AN-RNPOTI H

LOWER HYBRID /,INSTABILITY

3.F rake
Depart - ys-cs and Astronomy,

University of Maryland, -.
College Park, Maryland 20740

Pr~~~~ ? -, C, -: - 6 -. .

ABSTRACT ..

The dynamics of electrons in a low-frequency wave propagating

perpendicular to a uniform magnetic field are studied and the impli-

cations of these results for transport and heating by the lower

hybrid drift instability are explored. Below a threshold'\ /T1

.25-.5, all electron energy and momentum exchange with the wave are

reversible and no plasma transport is possible. Above this

threshold, trapping of electrons by the wave potentials takes place

and causes irreversible electron heating and momentum exchange.

These results imply that anomolous transport in inhomogeneous

plasma with weak drifts (diamagnetic velocity less than the ion

thermal velocity) may be substantially less than previously predicted. L._
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1. INTRODUCTION

The subject of heating and transport in high-temperature, magnetically-

confined plasma, where classical collisional processes are weak, is of great

importance both in achieving thermonuclear fusion in laboratory confinement

systems and in understanding fundamental natural phenomena such as magnetic

substorms. Instabilities whose source of free energy is the plasma density

or magnetic field gradients are likely to produce fluctuating electric or

magnetic fields which cause crossfield particle transport. In systems

with rather sharp densitv gradients where p /Ln > (m e/mi) 1/2

Pi and Ln being the ion Larmor radius and density scale length, respectively,

the lower-hybrid-drift instability is unstable and is expected to play a

1-5
dominant role in the evolution of the plasma profiles. Such sharp gradients

occur in a variety of phvsical systems including laboratory plasmas such as

8-pinches and reversed-field pinches and space plasmas in the bow and tail

of the earth's magnetosphere. The linear properties of this mode have been

1-3
extensively investigated. The instability is driven by the pressure gradient

and is characterized bv a frequency w and growth rate y given by w kV dir(P/Ln)(,l >> Si' y < w , where Vdi is the ion diamagnetic velocity, s2i is

the ion gyrofrequency and wlh is the lower hybrid frequency. The growth rate

of the instability is sharply peaked perpendicular to (k,, = 0 0) since

electron Landau damping for finite k,, is strongly stabilizing.

The transport and heating associated with the nonlinear evolution of the

lower hvbrid drift instability, which can be described by an effective "anomolous"

2
resistivity, have been calculated in a quasilinear analvsis. Particle simu-

lations of the instability in both straight (e-pinch) and reversed magnetic

fields have also demonstrated that electron heatine and transport can ac-

company the nonlinear development of the mode.6 '
7
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Heating and transport are, by definition, irreversible processes and the

subject of irreversibility must be addressed in discussing any transport or

heating mechanism. In low temperature plasm collisions guarantee irreversi-

bility on the macroscopic scale. In collisionless plasma, resonant wave

particle interactions lead to irreversible exchanges of energy or momentum

(and consequently transport). In the previous quasilinear investigation of

heating by the lower hybrid drift mode, only perpendicularly propagating waves
2

(kl = 0) were considered. Ions, which behave as if they are completely un-

magnetized (since w >> Qi) , resonantly interact with the wave and exchange

momentum and energy. The electrons, however, which are tightly bound to the

magnetic field lines (w << 2e) are nonresonant and therefore undergo no

irreversible energy or momentum exchange (neglecting VB resonances). The

quasilinear electron "heating" previously calculated simply results from the

coherent sloshing of the electron distribution function in the lower hybrid

waves and is completely reversible. In particular, for nonresonant particles,

the heating rate is proportional to a J 2/3t, and the temperature increase

scales as El2, E being the amplitude of the electric field perturbation.

After an entire growth and damping cycle of the wave is completed, El - 0

and there is no net electron heating.

Although the quasilinear theory predicts that no irreversible electron

heating can take place for 0, computer simulations of the lower hybrid-

drift-instability indicate that electron heating does ictually occur. 6 , 7

These simulations are carried out in the two-space dimensions orthogonal to B

and consequently k,,= 0. If this heating is a real physical effect and not a

consequence of numerical errors, it must be associated with strone nonlinearities

in the electron motion not property described by the quasilinear theory.

To develop an understanding of electron heating by the lower-hybrid-drift

instabIlity, we study the electron dvnamics in a singl' large-amplitude, low

L .
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frequency (w << e wave propagating perpendicular to

E (y,t) E°(t) cos(k y - Wt) , (1)
y y y

where the time dependence of E (t) represents the growth or damping of the wave.
y

The single mode approximation is a reasonable model of the simulations which

were largely dominated by a single, coherent wave. Other physical effects

including VB drifts, the two dimensionality of wave and the self-consistent

evolution of the wave amplitude are neglected.

At small wave amplitude, the electron motion in this electric field is

simply given by the usual E x B and polarization drifts and is accurately

described by the quasilinear theory. Above a threshold given approximately

by

ky(cEy/B e )= kyv , (2)y y e y

the electron cyclotron motion is strongly modified and the electron motion

becomes stochastic. The distance Ay in Eq. (2) is the y displacement of the

electron due to the polarization drift. When this displacement is comparable

to the wavelength of the electric field, the strong modification of the

electron dynamics should not be too surprising. Above the threshold given in

Eq. (2) substantial electron heating can occur.

The present investigation of electron dynamics is related to previous

J studies of stochastic ion motion in large amplitude waves. Smith and Kaufman

studied the ion transition to stochastic motion in an obliquely propagating

8wave. Stochastic particle motion in perpendicularly propagating waves has
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also been investigated.9 However, the authors were primarily interested in

lower hybrid heating of ions and therefore, only considered cases where w >> Qi"

More recently, heating by a large amplitude standing wave has been studied.
1 0

The present calculation is actually somewhat simpler than the previous in-
-1 -I

vestigations. The existence of two disparate time scales Q-I and w allowse

a straightforward analytic investigation of the electron motion and subsequently

to the threshold given in Eq. (2).

In Section II of this paper, the electron motion and transition to stoch-

asticity in a single wave is discussed. In Section III, these results are

extended to an arbitrary number of waves in one-space dimension. In contrast

with some turbulence theories based on the renormalization of particle orbits

spatial diffusion is, strictly speaking, not possible in one-dimensional, low-

frequency turbulence. In Section IV, the implications of these results for

the saturation and transport associated with the lower-hybrid-drift unstability

are discussed. In Section V, the essential results and conclusions are summarized.

* ~Acce5ssf~

,Fo

*ff
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II. STOCHASTIC ELECTRON MOTION IN A SINGLE WAVE

The equations of motion for electrons in a plane wave propagating

pendicular to a uniform magnetic field B = Bz are simply

y = 0 i - eE /m (3)e ye

x = e e (4)

where Qe=eB/m ec is the electron gvrofrequencv, Ev (v,t) is given in Eq. (1),

and the dot denotes d/dt. Equation (4) can be integrated once and k can then

be eliminated from Eq. (3) to obtain the single equation

a + 6 = a cos( - Vt + ) (5)

where = k /y, WS' = -k eE /m e time has been normalized to the

gyrofrequency and is the initial phase. This equation has been studied

9
previously in the limit v >> 1. We consider the opposite limit v << 1.

In the limit v - 0, Eq. (5) can be integrated exactly to obtain the

particle energy

H = /2 + 02/2 - cL sin(O + 4) const. (6)

The particle motion can be simply understood by plotting the constant H

curves in the ; -8 phase plane as shown in Fig. la for a << 1 and Fig. lb for

Ox >> 1. The electrons simply move along the constant H curves in this phase

space. When a << 1, these curves are essentially concentric circles weakly

modified by the presence of the wave. The electric motion around these curves
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on a time t 1 1 corresponds to the usual electron Larmor motion. When

a >> 1, the phase space structure becomes more complex with the formation

of x and 0 Points as can be seen in Fie. lb. The electrons azain circulate

around the closed phase space curves on a time t 1, except in narrow bands

around the separations where the period becomes very long. In this limit the

usual Larmor orbit is strongly modified by the presence of the wave. The

islands shown in Fig. lb correspond to regions where the perpendicular

electric field is large enough to overcome the magnetic field and trap the

electrons.

The location of the stationary points (x and 0 points) in the phase space

of Fig. 1 can be calculated by solving aH/aO = ll/6 = 0 or

= 0 (7a)

as = a cos(8 s + ) (7b)

The solutions to Eq. (7b) are shown graphicallv in Fig. 2. For a < 1, there

is a single 0 point as shown in Fig. la given by

0= s cos «1 < (8)

while for a > 1, there are multiple x and 0 points increasing in number with

a. For a >> 1, the solutions are approximately given by

Ii

os + (n + 1)71[1 + (-1)n/(, , (9)

where n is an integer and we have assumed 1Isl c -1l. The outermost 0 point

is given approximately by 0 % (see Fig. 2).
s
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The electron motion in the vicinity of the 0-points of Fig. lb can be

investigated by expanding H in a Taylor series,

212 2 2H 0 2 + &b('o )/2 , (10)
2 2121/2

where W= b 2 = [i+a(i-0/ 2/2  is the bounce frequency of the

electron in the potential well. For 10s <<a (large islands in Fig. lb),

1/2 1/2W b C-Itt) =a / , which corresponds to the usual bounce frequency

k y(e °/me )1/2 of a trapped electron in the absence of the magnetic field.

Note that since a>l, the bounce frequency for these electrons is greater than

the gyrofrequency. The bounce frequency of electrons in the smaller islands

of Fig. lb decreases monotonically with increasing Os I until wb l for the

outermost islands.

When v 0, the particle energy

H = e /2 + 2 /2 - a sin(O - vt + P) , (11)

the generalization of Eq. (6) for finite v, is no longer a constant of the

motion. However, in-so-far as v << 1, the energy is approximately conserved

during the rapid gyro-motion discussed in Fig. 1 and this rapid motion is

basically unchanged by v, which simply enters Eq. (11) as a phase shift.

On a longer time scale vt u 1, the particle energy change cannot be neglected.

To simplifv the discussion of the electron dynamics for v j 0, the two cases

<< 1 are considered separately.

A. Small Amplitude Waves: a << 1

With v 0 the constant H curves shown in Fig. la change on a time scale
-1
v and, in particular, the 0-point oscillates periodically
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0 s cx cos(4 - vt). (12)

S

The particle energy H, which is no longer constant can be calculated directly,

H = -c sin(O - vt + d) + va cos(O - vt + ) (13)

where terms not proportional to ai or v have been eliminated by invoking

Eq. (5). To find the long time evolution of H, we average Eq. (13) over the

fast cyclotron motion contained in 6(t),

<H> = - <sin(O - vt + a)> + va<cos(O - Vt + a,)> (14)
t t t

For electrons near the 0-point of Fig. la, i.e., electrons with small Larmor

radius, <sin(O - vt + p)>t sin(0s - vt + 0) and

<H> t  -a sin( s - Vt + cI) + VU cos(0 s - Vt + p) (15)

d H(O s,t)/dt

Iwhere H(s, t) is the energy at the O-point. Since the rate of chanae of the

energy of the particle near the O-point is the same as the energy of the 0-

point, the particle must follow the 0-point. As the O-point in Fig. la

oscillates in 0, the particles simply follow along.

-l
The average energy gain of the electrons over many oscillations v can

be obtained by further averaging Eq. (15) over the time scale v under the

assumption that a/a << v. We find

<<H>>t - c/2 = I d a 2/dt , (16)

7"ANN"
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where higher order terms in a have been neglected and <-> represents thet
-i

second time average over the v time scale. This change in the particle

energy is simply the increase or decrease of the sloshing energy of the

electrons in the wave as the wave amplitude changes and is entirely re-

versible.

The previous discussion of the small Larmor radius particles, which are

localized near the 0-points can be easily generalized to arbitrary Larmor

radius. Since the change in the constant H curves in Fig. la is much

slower than the rapid cyclotron motion around the curves, the area within a

particle orbit must be preserved, i.e.

J( OdO (37)

is constant. In the previous calculation for electrons near the O-point, the

area within the orbit could only be preserved if the electron followed the

O-point. To demonstrate that no irreversible electron heating can occur for

a < I and arbitrary Larmor radius, we allow the wave amplitude a to increase

to some maximum amplitude and then decrease to zero. Since the area within

the particle orbit is the same in the initial and final states and the energy

is a single valued function of the area, no net change in the particle energy

can occur so all electron "heating" is reversible.

B. Large Amplitude Wave: a >> I

When v # 0, the islands shown in Fig. lb for a > I move toward positive

a with an approximate velocity e " v, the phase velocity of the wave. More

specifically, an island is formed at e = -a with zero amplitude. The x-point

propagates with a velocity

I
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= V( + ' (18)s

and the O-point with a velocity

-0 -

-0 v(1 - a-1) (19)
s

Thus, the island half width AO increases as the island propagates at a rate

A5 2v/a (20)

The island reaches maximum amplitude at 0 = 0 and then shrinks at the same

rate and disappears at 0 =a. The lifetime - of a given island is therefore
S5

r 2 2a/v . (21)
s

The motion of electrons which are far from the separatrices in Fig. lb

can be calculated in a fashion analagous to the weak field limit u < 1. For

example, an electron within an island in Fig. lb must move toward positive 0

to preserve the J invariant of its orbit. However, since the island shrinks

and eventually disappears as it propagates toward O=a , all electrons within

a given island must eventually cross the senaratrix of the island. A the

electrons intercept the separatrix, the J invariant is broken si;4.: -hv period

of the particle orbit on the separatrix is infinite and therefore nu longer small

-1
compared with v . The detrapping or conversely the trapping of electrons is

therefore an irreversible process. All electrons with energy H < a 2/2

eventually participate in this trapping-detrapping process and we would there-

fore expect the electrons to eventually populate this entire phase space. De-

pending on the initial electron temperature, this strong wave-particle inter-

action produces substantial bulk electron heating. In unnormalized units, the
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effective electron temperature becomes

T mc 2E 2 /B2 (22)
e y

i.e., the electron thermal velocity is simply cE /B.

Electron trapping by a large amplitude perpendicularly propagating wave

has been observed previously in computer simulations of the electron beam

cyclotron instability. The qualitative features of the trapping-detrapping

process for a >> I were observed. In these simulations, however, the wave

frequency and electron cyclotron frequency were comparable (v r' 1) and J was

not a constant of the motion. We would expect, therefore, that electron trapping

would be much less complete than in the case v << 1.

".1

I!i
"I.
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III. MULTIPLE WAVES

The invariance of J for the motion of electrons in a low frequency wave

w <<Qe was essential in deriving the stochasticity threshold in Eq. (1). As

long as the low frequency assumption is satisfied, the previous calculation

can be extended to include an arbitrary number of waves. The equation of

motion for electrons in an arbitrary spectrum of one-dimensional, low-frequency

waves is simply

y + y = -c E (y,t)/B2

(23)

= -(c/BQ2) Ek cos(ky - Vkt +

with an energy

H = y2 /2 + y2 /2 - (c/B2) Ek sin(ky - vkt + k)/k (24)

e kkk k

The electron motion can again only become stochastic once multiple

stationary points are formed, which requires

3E y/y > Q2 B/c (25)

When this threshold is exceeded locally, electron heating can occur. In most

physical systems of interest, precise wave phase information is not available

and a threshold based on averaged stochastical properties of the wave turbu-

lence is desireable. If the phases *k of the individual waves are random,

we simply square Eq. (25) and average over the random phases to obtain the

stochasticity condition
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IcEk/BI 2 k 2//Q2 > 1 (26)

k

Particle motion in random-phased, perpendicularly propagating waves has

been discussed by a number of authors in connection with turbulence theories

based on the renormalization of particle rropagators. Dum and Dupree investi-

gated particle motion ina general spectrum of low frequency fluctuations.

In their formalism, electrons can undergo spatial diffusion in a one-

dimensional spectrum of waves once the following threshold is exceeded,

IcE /B12 k4P2/ 2 >1 , (27)

k k e

where P = v / is the electron Larmor radius. In contrast, the present

calculation demonstrates that the spatial. excursion of electrons is always

bounded since the constant H curves are always closed. Spatial and velocity

diffusion are only possible in the limited sense that the electron position

and velocity can scatter over a bounded region of phase space [for example,

H < a2 in Fig. lb] and only when the threshold given in Eq. (26) is exceeded.

A more detailed discussion of the absence of spatial diffusion in this one-

dimensional model is presented in Appendix A.

.1

i
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IV. APPLICATION TO THE LOWER HYBRID DRIFT INSTABILITY

The basic properties of the lower-hybrid-drift instability have been

briefly mentioned in the Introduction and have been extensively discussed in

1-3
the literature. The instability essentially causes the plasma density

profile to become fluted perpendicular to B. Below the thresholds given

in Eq. (2) in the case of a single wave and Eq. (24) for the case of many

waves, the electrons simply undergo coherent oscillations in the wave and the

lower-hybrid-drift wave cannot irreversibly exchange energy or momentum with

the electrons. Thus, if the instability saturates before this threshold is

exceeded, the lower-hybrid-drift instability cannot cause anomalous diffusion

of an inhomogeneous plasma. In this limit, the plasma essentuallv evolves

to a complicated fluted state but the mechanism by which this fluted state

can evolve to a diffuse profile must involve new physics not yet incorporated

into the present model.

The distinction between the evolution of an inhomogeneous plasma to a

fluted state and the evolution to a more diffuse profile has not been

adequately addressed within the literature, possibly because it has been

assumed that once the flutes develop, theevolucion to a broader

smooth profile was an inevitable process. In computer simulations of the

lower-hybrid-drift instability, for example, the formation of these flutes has

been observed. The density profile is then calculated by averaging over

these flutes. This averaging process can produce an apparent broadening of

the plasma profile even though no diffusion has actually occurred. To

illustrate this point, we consider a periodic displacement of the density

profile

n(xy) = n [x+Ax(y)] . (28)
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where x(v) is. the Isplalcement. Clearlv. no diffusion ha-, taken~r place since

for it given v, the plasma profile Is unchangc-d. Yet when ii(x. v) is averaged

over v, we f ind

=, nxy- n 0 W + </'x" i n o/)'x~ (29)

The profile has effectively diffused as shown in Fig. 3. This fake "diffusion"

is analogus to the elect ron "heat ing" .tssoc a dwt ecoeetsohin

of electrons in the wave. In computer simulations of this instability, verv

little real diffusion Is observed in the weak dirift regime v1 V while in
di7

the stronger drift regime v di" v real diffusion is observed. 7We now con-

sider under what conditions the thresholds in Eqs. (") and (26) can he

exceeded, -illowing transport to take place.

Three basic saturation mechanisms for the lower-hivbrid-drift instabi Iitv

have been discussed: (1) trapping or flattening of the ion velocity distribu-

*1tion function; 6,3(2) depletion of the free energ,. available to drive the-

4,61 14
instability; 6,3and (3) electron resonance broadening. The lower-livhrid-

drift instability is basically a negative energy wave driven hv ion Landau

damping. Flattening of the ion distribution either by quasiliiiear rel.ixation

or trapping can therefore lead to saturation by quenching the ion Landaul

The energy source of the lower-hybrid-drift mode is the drift energy pro-

duced by the local gradients, nmv 2 /2 . It was previouslv predicted that the

wave energy

WE = WOODl)(E 2/80)
E y

(30)

=2(1 +w 2/Q 2)(E 2/81i)
pe e y

could not exceed the particle drift energy 4or thatI the electric field

* fluctuation must satisfy
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(CyB2 2 2/ 2
(cE /B) v di/[(1 + )e (3!)e pe

In a finite beta system, of course, the drift energy and magnetic energy are

15linked so that the magnetic energy also changes as the local gradients change.

In a straight 0-pinch. the change in the magnetic energy AW as the gradient

relaxes is approximately (see Appendix B)

AWB = n(Te+T 1) g() (32a)

with

g()=[(+P) 12_1/2 10+ 112+1], (32b)

where =gTn(T +T I is a representative value of the local plasma beta.

/)l/2
This magnetic free energy exceeds the drift energy as long as vdi /v < (mmi /

so the wave energy hound becomes

"2 22v

(cF /B) 2 g(F)/2l+ /W 2 (33)
y es e pe

where V- = (T +T )/m . In a system where the narticle drifts support a reversed
e s e I e

magnetic field, such as a reversed field 0-pinch, the gradients cannot be

relaxed without dissipating all the magnetic energy in the system, the free

energy available to drive the instability is effectively infinite and there is

no wave energy bound
16

Resonance broadening has also been proposed as a saturation mechanism tor

the lower-hybrid-drift instability.14 Once the fluctuating electric fields

exceed a critical amplitude, the electrons, which are initially nonresonant,

can effectively resonantly interact with the waves. The resulting "Landau"

damping of the wave energy stabilizes the wave spectrum. The threshold at

which this transition takes place is, of course, the subject of this paper

and is given by either Eq. (2) or Eq. (26) in the case of single or multiple

waves, respectively. These thresholds are substantially higher than those
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predicted on tihe hasis of resonance broadening theorv IEq. (27)].

Above the stochasticity threshold, strong electron heating takes place, thus

dissipating the wave energy and stabilizing the lower hybrid drift wave. If

ion trapping or depletion of the free energy do not occur first, the lower-

hybrid-drift instability will saturate at an amplitude given by either Eq. (2)

or Eq. (26). In the previous application of the resonance broadening theory

to the lower-hybrid-drift instability, substantially lower thresholds were

14
predicted when electron VB drifts were included. The question of the

validity of the resonance broadening theory in the presence of the VB drifts

cannot be addressed on the basis of the present calculation. The reduction

of the stochasticity threshold by the VB drift, however, seems physically

reasonable, and the inclusion of these effects would be an important extension

of the present work.

We now consider under what conditions saturation of the lower-hybrid-

drift instability can occur by stochastic electron heating. The growth rate

of the lower-hybrid-drift instability peaks in the range kp 1-2, where
es

2 sv /Q so the electron stochastirity threshold in Eq. (2) becomesPes es e

S(kpes)-2 = .25 - 1 (34)

In the weak drift limit vdi/Vi << 1, the phase velocity of the wave is Vph Al

v di << v i The saturation of the instability can occur by flattening the ion

velocity distribution or ion trapping at an amplitude

eo = miv h/2 = mivdi/2 -< T (35)

even in the absence of the wave energy bound.13 This amplitude is below the

---- --
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threshold for electron stochasticity given in Eq. (i!) so no electron diffusion

is possible in the weak drift regime. In the strong drift regime Vdi v, , ion

2 c 2 6
trapping occurs when eo -u miv h/2 > m 'v2/2 or V

e4/T I > 1 (16)

so the electron stochasticity and Ion trapping conditions are comparable.

In the case of a reversed magnetic field in the strong drift regime both

ion trapping and electron stochasticity should cause saturation of the in-

stabil ity and stronn electron heating aind dit frision n our . For k . 1,

the wave energy bound in Eq. (33) for the straight pinch can he rewritten as

e 1/Ti  < g(') (37)

In a high B configuration this hound is comparable to the ion trapping and electron

stochasticity conditions so that diffusion and heating will occur. In a low

s configuration the energy bound is smaller than either of these conditions

and no diffusion is possible.

Two-dimensional particle simulations of the lower-hybrid-drift

instability have been carried out in both straight and reversed magnetic

fields. 6 These runs were carried out for relatively strong drift Vd iVt 1 10

with relatively large B %0.25-1.0 and artificial mass ratios. As a consequence,

the wave energy bounds in Eqs. (31) and (37), the ion trapping threshold in

Eq. (36) and the electron stochasticity threshold in Eq. (34) are all

comparable even for the straight pinch. Electron heating should therefore be

expected, especially in the strong drift regime vd/V >> 1. In the case of

vdi/vi-2l fluting of the density profile is observed in the simulations hut the

mode saturates with very little actual broadening of the profile. 7 In the

strong drift regime both strong electron heating and diffusion are observed.

IJ as expected.
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V. SUMMARY AND CONCLUSIONS

Electron motion in a low-frequency (w << S. ) wave(s) propagating per-e

pendicular to a uniform magnetic field J.s studied. Both monochromatic and

broadband electric field spectra have been considered although the investigation

is strictly limited to one-dimensional spectra. Below a threshold amplitude

given by

k y c E y/B&2e - 1 (37)

for the case of a monochromatic wave and the corresponding generalization

k cEk /BI 2 _ 1 (38)
k

for a broadband spectrum of waves, electron heating and momentum transfer

are strictly reversible. Above these thresholds, the Larmor motion of an

electron in a uniform magnetic field is strongly modified and trapping of the

electrons by the wave can occur. The electrons remain trapped for a time Itr

given by

T k cE /Bui.: = x/w :- (39)
tr y y e e

The process of trapping and detrapping allows an irreversible exchange of energy

between the electrons and the wave and, in particular, causes bulk "heating"

of electrons to a mean velocity

v VE = cE y/B. (40)

*1Vy
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This trapping-detrapping phenomena has been previously observed in computer

simulations of the electron beam cyclotron instability, although the trapping

is much less complete in this limit because W S 12

The implications of these results for the nonlinear evolution of the lower-

hybrid-drift instability and associated transport have been explored. The growth

rate of the lower-hybrid-drift instability peaks for kpes = k(Tim e)1/2e 1-2

so the threshold in Eq. (37) becomes

eO/T. = .25 - 1 (41)

Below this threshold no irreversible electron heating or momentum transfer is

possible and the lower-hybrid-drift instabilitv cannot cause diffusion of

electrons in an inhomogeneous plasma. The apparent diffusion which is found

from quasilinear theory in this limit corresponds to the formation of flutes

or ripples in the plasma profile - not to the evolution to a more diffuse

profile. In the weak drift regime vdi <vi, the lower-hybrid-drift instability

saturates below the threshold given in Eq. (41) by trapping ions or depleting

13
the source of free energy, and transport by the lower hybrid drift

instability is not possible (at least within the limitations of the present

model).

In the strong drift regime Vdi >v, the lower hybrid drift instability

grows until the threshold in Eq. (41) is exceeded. The rapid onset of strong

electron heating above this threshold prevents further amplifications of the

wave and thus saturation of the instability occurs for e/T i 'l. Electron

heating, transport, and magnetic energy dissipation accompany the saturation

of the mode in this limit 16 and have been observed in recent computer simula-

7tions of the lower-hybrod-drift instability in a reversed magnetic field.
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It should be emphasized that these conclusions are strictly based on the

present limited model: (I) a one-dimensional wave spectrum; (2) k1 = k- ./JBj = 0;

and (3) a uniform magnetic field. The relaxation of these assumptions should

lead to a reduction of the threshold given in Eq. (31) and allow the lower-

hybrid-drift instability to cause anomalous transport in the weak drift regimes.
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APPENDIX A

We now consider in more detail, the electron dynamics in a one-dimensional

spectrum of low frequenc" (w e< ) waves. The electron equation of motion is

given in Eq. (23),

y + y -cE (y,t)/B 2 1 -(y,t) (Al)

y e r

We have shown that the electron motion is bounded and y therefore remains

finite for all time. For simplicity, we limit our investigation to the case

I where the stochasticity threshold in Eq. (26) is not exceeded and the electron

Larmor radius is small compared to the wavelength of the fluctuations. In this

case, E(y,t) can be expanded around y 0,

y + y(U + ach/y) = -6(0,t) (A2)

The electric field fluctuations cause a frequency shift of the electron gyro-

motion 6 2(t) = (ae(y,t)/3y) y=O * The solution of Eq. (A2) is

y(t) C -t(t) + Pe cos(t + p + 6 ), (A3)

where pe is the electron Larmor radius, is the initial phase angle of the

electron in its gyromotion and

6 f(t) = 6Q(T) , (A4)

0

is the phase shift induced by the fluctuating electric field. Averaging y(t)j over an ensemble of fluctuations,
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< y~): <-CoLS(t + p+ 6)

(A5)

Pe c os.(t +4)exp-I(/]

where

}P d'r 1d 12 < 6 ( 1>2( 2 (A6)

->durotes an average over the, ensemble and the ciimulzoit' expansion has been

17
0sk0d to evaluate <exp(i5'p)> 4zxp(- (/2) . The eleCtroii diffusion can EAiai~arly

be calculated,

2 2 *2> .2
< 6y> < <V- + 1V2)[I exp(- )]. (A 7

If the electric field fluctuations have a finite correlation time Fthen for

L > Ti

< 6 y2 =< c> + (p2 2) [1 exp(tJ (A8)
e

where

=(21 dk dw )2

The first term in Eq. (A6) corresponds to the mean excursioni of the eict I. rou I

associated with its polarization drift. The second term arised because of th-

frequency shift of the electron Larmor motion. The phase of the electron:

*along their orbits becomes uncertain and is reflected in an uncertainty ill their

position. Over short times this appears as a diffusion

2~ 2(A )
< 6y >' Pejt/2 ( 0

of the particle position [compare with Eq. (7) in xof. .14 in the long wavelength



-- -- I iiT -

25

limit]. However, over longer times 4t > 1, the maximum uncertainty in the particle

2
position is p e/2, i.e., the phase angle of the electron in its Larmor orbit is

completely unknown. Thus, spatial diffusion is possible below the threshold given

in Eq. (26) for v finite but is limited to the electron Larmor radius.C

This result is consistent with the previous discussion of the preservation of the

J invariant in Fig. la. The phase of the electron along the curves shown in

Fig. 1 can become uncertain but the area within the curve is still preserved and

thus diffusion is strictly limited.

It should also be noted that even the limited diffusion described by Eq. (A8)

is produced only by the zero frequency component of the wave spectrum [see Eq. (A9)].

The frequency shift of the u # 0 waves is periodic and causes no net phase shift

of the electrons in their Larmor motion. In a spectrum of high frequency waves

no diffusion occurs unless the threshold in Eq. (26) is exceeded. The "bootstrap"

diffusion calculated by Dum-Dupree when the threshold in Eq. (27) is exceeded does

not take place because the excursion of electrons in the fluctuating electric

fields is strictly bounded (there is no orbit secularity).

.1

.1
! '~
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APPENDITX B

The lower hybrid drift instability is driven by the drift energy of the

v2/
electrons, n my /2. However, in a finite ( plasma the magnetic field andS e d

the plasma currents are linked so the plasma currents can not be relaxed

without changing the magnetic energy. When the plasma currents support a

reversed magnetic field, the plasma current can not be dissipated without dis-

sipating all the magnetic energy in the system so there is effectively no

energy bound for the lower hybrid drift instability. We now consider the

change in magnetic energy as the plasma profile broadens in the straight e

pinch.

For simplicity, the plasma profile is modeled by the simple step shown

in Fig. 4 (the profile is taken to be symmetric around x=O). An initial
i I

plasma of density ni, temperature T. and in a magnetic field B1 is supported

by an external magnetic field Bo. The initial plasma width L1 is allowed to
U ~01

increase. Conducting boundaries at X=L0 prevent flux from entering or leaving

the svstem so Lhe total flux

A Bi iB (Lb-b) (BI)1 1 L 1 0B 1

ii

is constant. The total number density N=n L is also conserved. The change

in the particle drift energy is ignored since this can only increase the free

energy available to drive the lower hybrid drift instability.

Local pressure balance

B 2/ m = B 2/8r + nT (B2)

will also be maintained during the evolution of the profile. Flux and particle

conservation are invoked to eliminate B I and n from (B2) to obtain an expression

for T,

T/T [ 2B o 1 - 1 (B- B )I/fL,(B 0+BiPI >1 .(B3)



27

i T/i iB /(

When L L T/T = lB/(B +B 1) or the increase in temperature AT=T-T is

given by

A T = T i l(l+i ) 1/ 2- ]1/[(1+Bi ) 1/2] (B4)

.2
where B =8n T / B 1 is the initial plasma beta. In a low B system the

I

temperature increase is given by

i i
AT' '_1 Ti 6i/2 << T (B5)

In a high B system. however, the plasma heating can be substantial with

AT -1T..

This increase in the plasma thermal energy is matched by a corresponding

reduction in the magnetic energy, i.e., as the sheath broadens, the system

evolves to a lower magnetic energy state. This energy must be included in

the free energy available to drive the lower hybrid drift mode since the

plasma currents can not be relaxed until all of the magnetic energy has been

dissipated. Although the expression for AT in Eq. (B4) was derived for the

rather simplified step model in Fig. 4, the qualitative scaling with B

is valid for a more general profile and will be discussed in a subsequent

15
publication.
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FIGURE CAPTIONS

Fig. 1. Constant H curves are shown in the 0-6 phase plane for a = .5,

= 0 in (a) and a = 
8 7, n = /2 in (b).

Fig. 2. The positions of the stationary points es  a cos(e s + are shown

graphically for the parameters of Fig. lb.

Fig. 3. The pseudo-diffusion <n [x+Ax(y)]> Wn(X) +(i/2)n<Ax2 > which
0y 0

results from the periodic displacement Ax(y) of an initial

plasma profile n (x) is shown. The bracket - denotes a spatialo y

average over v.

Fig. 4. The 0-pinch profile is modeled by a simple step in the magnetic

field profile. The profile is symmetric around x=O.

.1L
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